

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2015
Lab 06 – While Loops

Assignment: Lab 06 – While Loops
Due Date: During discussion, October 5th through October 8th
Value: 1% of final grade

Part 1: While Loops
A while loop statement in the Python programming language repeatedly

executes a target statement as long as a given Boolean condition is True.

The syntax of a while loop in the Python programming language is:

while CONDITION:

 STATEMENTS(S)

Here, statement(s) may be a single statement or a block of statements. The
condition can be any expression, as long as it evaluates to either True or

False. (Remember, any non-zero value is seen as “True” by Python.) The

while loop continues to run as long as (while) the condition is still True.

As soon as the condition evaluates to False, program control passes to the

line immediately following the while loop. This is the first line of code after

the while loop and its statements that it indented to the same depth as the

“while CONDITION:” line of code.

Remember that in Python, all the statements indented by the same number of
character spaces after a programming construct are considered to be part of
a single block of code. Python uses indentation as its method of grouping
statements.

CMSC 201 – Computer Science I for Majors Page 2

Figure1. A while loop in Python

It is also possible that a while loop might not ever run its conditional code

(the “STATEMENTS” inside the while loop). If the condition is tested and

the result is False, the loop body (the statements) will be skipped and the

first line of code after the while loop will be executed.
count = 0

while (count < 5):

 print ('The count is:', count)

 count = count + 1

print ("Good bye!")

When the above code is executed, it produces the following result :

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

Good bye!

CMSC 201 – Computer Science I for Majors Page 3

Part 2: Interactive (Sentinel) Loops

Another way to use a while loop is as an interactive or sentinel loop. An

interactive (sentinel) loop continues to process data until reaching a special
value that signals the end. The special value is called the sentinel.
You can choose to use any value for the sentinel. The only requirement is
that it must be distinguishable from actual data values. The sentinel should
also not be processed as part of the data.

The pseudocode for an interactive (sentinel) loop in the Python programming
language is as follows:

Get the first data item from the user

While data item is not the sentinel

 Process the data item

 Get the next data item from the user

One of the scenarios in which we can implement this type of loop is a version
of our grocery list program that allows us to enter as many items as we like.
Although it is similar to previous versions, the interactive (sentinel) while loop
of the grocery list program allows us to enter as many items as we like until
the sentinel value of "exit" is entered.

def main():
 grocery_list = [] # initialize the list to be empty

 userVal = "" # give our loop variable an initial

 # value so it will enter the loop

 # run the while loop until the user enters "exit"

 while userVal != "exit":

 userVal = input("Enter an item, or 'exit' to end: ")

 if userVal != "exit":

 grocery_list.append(userVal)

 # once the user is done with the list, print it out

 for i in grocery_list:

 print("Remember to buy", i)

main()

CMSC 201 – Computer Science I for Majors Page 4

When the above code is executed, it produces the following result :

Enter an item, or 'exit' to end: candy

Enter an item, or 'exit' to end: cookies

Enter an item, or 'exit' to end: gummy bears

Enter an item, or 'exit' to end: exit

Remember to buy candy

Remember to buy cookies

Remember to buy gummy bears

CMSC 201 – Computer Science I for Majors Page 5

Part 3A: Writing Your Program
After logging into GL, navigate to the Labs folder inside your 201 folder.

Create a folder there called lab6, and go inside the newly created lab6

directory.

linux2[1]% cd 201/Labs

linux2[2]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs

linux2[3]% mkdir lab6

linux2[4]% cd lab6

linux2[5]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab6

linux2[6]% █

(You will only be writing one python file for this assignment.)

To open the file for editing, type
 emacs password.py &

and hit enter. (The ampersand at the end of the line is important – without it,
your terminal will “freeze” until you close the emacs window. Do not do this
if you are not on a lab computer.)

The first thing you should do in your new file is create and fill out the
comment header block at the top of your file. Here is a template:

File: password.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR DISCUSSION SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

Now you can start writing your code for the lab, following the instructions in
Parts 3B.

CMSC 201 – Computer Science I for Majors Page 6

Part 3B: Password Checker

To practice using while loops and string comparison, you will be creating a

program that takes in a password guess from the user (a string) and check if
their guess matches the actual password (a predefined value from your
program). The user will get three chances to enter the correct password.

THINK: What is your input, output, and process for this problem?

(Don’t scroll down to the next page until you’ve thought about this!)

CMSC 201 – Computer Science I for Majors Page 7

For the first part of your code, you should ask the user to input their guess at
the password (a string). Then, using a while loop, your program should

compare the user’s input (their guess) to the PASSWORD (a constant that is
set in your code). If the user guesses the password wrong 3 times, it tells the
user and quits the program.

Input:
User enters a guess at the password (a string)

bash-4.1$ python password.py

Enter the password: password123

Process:
Using a while loop:

 Check guess vs. PASSWORD
 (should be a constant variable PASSWORD = "UMBCrulz")

 If they match, tell user guess was accepted
 Else, tell the user that the guess was incorrect.
 Tell user how many additional guesses they have left

If the number of incorrect guesses exceeds 3, tell the user that they cannot
access the system (and the program should end). You will need to remember
to keep track of how many tries they have left.

Output:
Prompt for password
Message for “Successful Login” or for “Unsuccessful Login”

YOU MUST USE A while LOOP FOR THIS LAB.

(There are hints on the next page if you need them.)

CMSC 201 – Computer Science I for Majors Page 8

Try to solve Part 3B on your own before you turn to these hints!

Are you stuck on how to get started?
Start by creating the interactive (sentinel) loop that gets the user to enter their
guess. Get the loop to work (just with accepting the correct password) before
you worry about the number of tries.
If you accidentally made an infinite loop, use CTRL+C to stop it running!

Don’t know how to store the correct password or number of tries?
You should use constants! One to hold the password “UMBCrulz” and one to
hold the number of guesses that are allowed (3). Remember that the variable
names constants should be in all uppercase.

Don’t know how to print off the number of guesses left?
You have the number allowed (your constant, set to 3) and the number of
attempts. Use these two variables to calculate the number of guesses left.

Don’t know how (or where) to stop when the user has no guesses left?
You may want to use a Boolean to see if the user has exceeded the number
of guesses allowed. This should be part of your while loop’s condition.

CMSC 201 – Computer Science I for Majors Page 9

Part 4: Completing Your Lab

To test your program, first enable Python 3, then run password.py. Try a

few different inputs to see how well your program works.

bash-4.1$ python password.py

Enter the password: UMBCrulz

You have successfully logged into the system.

bash-4.1$ python password.py

Enter the password: HappyHalloween

WRONG. You have 2 guesses left.

Enter the password: my_password

WRONG. You have 1 guesses left.

Enter the password: MooCow

Too many incorrect guesses. You are locked out of the system.

Since this is an in-person lab, you do not need to use the submit command

to complete your lab. Instead, raise your hand to let your TA know that you
are finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

